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Fig. 2 Vortex burst trajectories.

The control parameter K, in Eq. (9) is the only variable
needed to fine-tune the vortex-burst predictions. It was ad-
justed for the 60-deg delta wing to achieve onset of vortex
burst at the wing trailing edge at @ = 13 deg. A value of 2.6
for K, gave this result. When this same value of K, was used
for VBM/VLM computations over a range of angles of attack
for each of the wing shapes tested, the vortex burst locations
shown in Fig. 1 resulted. Wind-tunnel values for burst loca-
tions on similar models from Refs. 8 and 9 are plotted in Fig.
2 for comparison. Note the good agreement between the model
and wind-tunnel data for all shapes tested.

Conclusions

A model for leading-edge vortex bursting has been devel-
oped and used with the vortex lattice method to predict vortex
bursting on highly swept wings. The model was derived from
the steady, incompressible Navier—Stokes equations for the
vortex core. The method was tested on four highly swept wing
models. In all cases vortex burst predictions agreed well with
the vortex burst locations observed in wind- and water-tunnel
tests.
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Kill Probability in Antiaircraft
Firing Theory
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Nomenclature

P(x,, x>, x;) = damage function' (herein after referred to
as DF), which determines the value of
probability of killing the target on the
condition that the center of inertia of the
target is in a defined location in space
(x,, x5, x;) related to the projectile blast
epicenter.

P, = the probability of killing the target when
at least a single hit is scored. It is the
average value of DF for the points
(x,, x>, x3) contained within the target.

R, = random vector process or random vector
variable that describes ballistic dispersion.
It characterizes the location of a projectile
relatively to the average trajectory.

R, = random vector process or random vector
variable that describes aiming error. This
vector is characterized by a minimum
length during the projectile flight and is
equal to the difference between the radius
vector x, of the point that overlaps the
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c.m. of the projectile and the radius
vector x,. of the hypothetical target.

R, = random vector process or random vector
variable that describes corrected aiming
error. This vector is characterized by a
minimum length during the projectile
flight and is equal to the difference
between the radius vector x, of the point
that overlaps the c.m. of the projectile
and the radius vector x, of the actual
target.

Introduction

HIS Note will show the kill probability of a small-caliber

automatic AA cannon system against a single airborne
target. A probability model investigates the change in prob-
ability value as a function of ballistic and meteorological con-
ditions of shooting, number of rounds fired, technical char-
acteristics of the armament, fire control system, target, etc.
This model is therefore a tool for assessment of the existing
AA systems as well as the ones being designed. It can also
be used for the construction of models used for simulation of
combat action. The theory has been illustrated with examples
of numerical results.

The approach to probabilistic modeling of killing an air-
borne target may vary and depends on the number of data
available and the objective function of such analysis.

Usually during the analysis of this problem the following
two partial tasks are considered: 1) determination of DF,
P,(x,, x>, x;) and 2) determination of the probability of hitting
the target or hitting the certain three-dimensional range con-
taining the target, p.

DF characterizes each target—projectile configuration. These
functions are determined on the basis of empirical data. Some
examples of such functions can be found in a report of the
Bofors Company.? In comparative analysis, instead of the DF,
it is often accepted to use the probability of killing the target
when at least a single hit is scored, P,. The value of this
probability is usually given as a function of projectile caliber?
or mass of explosives in the projectile.*

The second of the two partial tasks is directly connected
with the problem of firing at the airborne target. Figure 1
presents the scheme of such firing. In the moment ¢,, the
projectile is at the muzzle. The target is then at a point A.
However, target tracking system locates the target at a point
A,. It is the result of a target tracking error characterized by
a vector R,. On the basis of the coordinates of A, the assumed
hypothesis for the target motion during the flight of the pro-
jectile, ballistic, and meteorological conditions of shooting,
the fire control system solves the hit problem. The solution
gives the hypothetical location of the hit point A,, in the mo-
ment ¢,. The existence of the aiming error R, is why in the
moment ¢, the projectile on average trajectory will be at a

Range of target-projectile rendezvous

Actual projectile )
. trajectory

Fig. 1 AA firing scheme.
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point P. Because of the ballistic dispersion R, the actual lo-
cation of the projectile in the moment ¢, is at point P’. Ad-
ditionally, the actual location of the target in the moment ¢,
is at point A,. The reason for that is the existence of the
corrected aiming error R,. Therefore, in the range of projectile
and target rendezvous their relative location will be described
by a vector R. The latter is the vector sum of R, and R,. It
has to be noted here that the optimization of the AA firing
problem means the minimization of R in the range of pro-
jectile and target rendezvous. Because of the random char-
acter of this phenomenon, R should be treated as a random
vector process or random vector variable. The determination
of the probability of hitting the target or hitting the certain
three-dimensional range containing the target p will be pos-
sible when the probability density function of R is known.
Additionally, the general model describing the kill proba-
bility should also take into consideration the number of rounds
fired and type of fire, i.e., single cannon or battery, etc.

Characteristics of R,, R; and R,

In practical applications, especially in comparative analysis,
it is often assumed that the errors R, or R, are characterized
by a three-dimensional vector normal variable with indepen-
dent components, which probability density in the reference
system associated with the target’s center of inertia is ex-
pressed with the following formula:
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where w,, w,, and w; denote mean values, and o,,, g,,, and
0,; denotes standard deviations for each component.

Then the mean values w,, w,, and w; are the components
of vector w, which characterizes the systematic error R, or
R, and the standard deviations a,;, 0,,, and o,; are the com-
ponents of vector ¢, which characterizes the random error R,
or R,. As shown on Fig. 1 the difference between R, and R;
equals R,.. For the target velocity of 250 m/s flying at a distance
of 3000 m from the AA battery firing position the absolute
value of R, can reach about 210 m for a 35 mm X 228 cartridge
and even about 290 m for a 30 mm X 170 cartridge.

For the ballistic dispersion R, the following is usually as-
sumed in the range of projectile and target rendezvous:

1) The position of projectile in relation to the average tra-
jectory is described by a normal random vector variable hav-
ing independent components; the standard deviations of the
components lying in a plane perpendicular to a tangent to the
trajectory are equal (o, = o, = o).

2) Projectile velocity is described by a determined vector
whose components are equal to the average components of
an adequate random process.

Then the probability density of the ballistic dispersion R,
is described in the reference system associated with the center
of dispersion with the following formula:

1 e+ ) X
f(xh X2, x3) - (277)3/20_20_3 exp { > [——————Uz + _o-%
2

Additionally, it is assumed that the standard deviations are
the functions of firing distance D as follows:

o(D) = A-D, oyD) = B-D, )

where o, is the standard deviation of the x; component ori-
ented along the tangent to the trajectory.
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According to Refs. 5 and 6 for the factors A and B one can
assume the following values: A = 0.0015 (1/m) and B =
0.00325 (1/m). They are the mean values for new AA cannons
in the range of calibers between 20-40 mm.

Probability of Killing with Kinetic Energy Projectile,
Taking into Account the Motion of the Target

The discussed probabilistic model is a result of generali-
zation of the papers by Pogorzelski’ and Brindli.* In this
analysis simplified models have been adopted to characterize
R, and R,. These models were discussed in the previous par-
agraph. Substituting R, by R, does not affect the procedure
and the final formulas. The following two scenarios were the
subject of analysis:

1) The first scenario is characterized by the lack of corre-
lation between R, and R,, this practically means a situation
in which the process of laying the gun is corrected for each
shot in a burst.

2) The second scenario applies to the case where there exists
a correlation between R, and R,. Attention was drawn to
an extreme case when the whole burst was shot with the
same R,.

Bearing in mind the possibility of experimental verification
of the model it was assumed that the target is a rectangular
shape moving with a velocity of v, in a direction given by the
longer side of the rectangular (Fig. 2). A right-handed Carte-
sian coordinate system O'x xx; was associated with the tar-
get. A right-handed Cartesian coordinate system Ox x,x, was
associated with the center of ballistic dispersion. The system
Ox,x,x; was moving with an average projectile velocity v,. It
was also assumed that the values of probability density of R,
and R, remain unchanged while firing a burst of N rounds.
Generally, the coordinate systems O’xjx3x}; and Ox,x,x; are
in relation to each other, translated and rotated.

Because of the complexity of the derivation of formulas
that describe the probability of killing the target, the rest of
the reasoning will be presented only in draft.

To determine the probability p of hit with a single shot, on
the condition that R, has the coordinates (1, n, and s), it was
necessary to find in the plane of the target the location of a
hit point (x,, and x,,) by a projectile located in point P’'. The
relations between the coordinates in both systems O'x{xx;}
and Oxx,x; are used to achieve this. These relations are in
accordance with the theory of the affine transformation for a
three-dimensional space. From the resulting formulas it is
possible then to find the coordinates x, and x, as functions of
Xpi5 Xp2s X3, V,3, and v, Single-shot hit probability p can be
obtained after the integration of formula (2) within the bound-
aries of the rectangular. The coordinates x, and x, have to be
expressed as functions of x,,, x,

bis Xp2s X3, V3, and v,. This leads
to the following formula:

+1 + I + >
_ ’ 1 ’ '
P = fﬁ[ J;h fﬁy_ f(xpl’ Xp2s X35 Vpa, Ve, 11, 1, 5) dx,, P2 dx;

4)
where 24 is the length of the side AB of the rectangular ABCD
in Fig. 2 and 2!/ is the length of the side BC of the rectangular
ABCD on Fig. 2.

The subsequent discussion applies to the second case when
there exists a correlation between R, and R,. Then the whole
burst was shot with the same R, described by the coordinates
(m, n, and 5). Two alternatives were considered in which an
event of target killing was characterized by a probability P,
or by a minimum number of required hits N,. In both cases
the reasoning is based on the Bernoulli’s scheme of experi-
ments.® In the first case the probability of success in an ex-
periment equals the product pP,. Then, according to the bi-
nominal distribution, the probability of at least one success
in N experiments equals

Pr=1- (0~ pP)¥ ©)
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Fig.2 Example location of the center of ballistic dispersion in relation
to the target.

The probability of zero hits in a burst of N shots equals
Py =0-p" (6)

and the probability of hitting, but not killing, the target in a
burst of N shots equals

Py =1— Py~ P @)

In the second case the probability of hitting the target at least
Ny times in a burst of N shots equals

Np—1

Pu 1= 2 om0 ®

k=0

The probability of missing the target in a burst of N shots
equals

Pey =1~ Pg — Py (9)

The probabilities given in formulas (5-9) are the condi-
tional ones. They relate to the case when R, is described by
the coordinates (m, n, and s). To calculate the relevant total
probabilities, one has to use Bayes’ formula.® This leads to
the calculation of the desired probabilities:

1) Target killing P,—when the event of target killing is
taken into account according to the first alternative.

2) Target killing Pr,—when the event of target killing is
taken into account according to the second alternative.

3) Hitting but not killing P.—when the event of target
killing is taken into account according to the first alternative.

4) Hitting but not killing P,,—when the event of target
killing is taken into account according to the second alter-
native.

5) Not hitting the target at all P,,—which probability is
equal for both alternatives of considering an event of target
killing

N
Pr=1— ﬁ f,. f, (1 = p-PYY,(m, n,s)dm dn ds
(10)

Py = fj/j Jt Jj: 1 - p)f(m, n,s)dndnds (11)

P.=1~- Py - P, (12)
Ny—1
N!
Pu=l= 2 K(N = k!
x f f 'L Pl — pYV ¥(m, n,s) dm dn ds
(13)
Py =1—- Py — Py, (14)
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In these formulas p should be substituted according to formula
(4) and the form of the function f,(m, n, s) is according to
formula (1).

For the first scenario, which is characterized by the lack of
correlation between R, and R,, calculations of each probability
were done using the fact that the probability ¢ of a miss in a
single shot is given by formula (11) when one substitutes
N = 1. Then the probability of hit with a single shot equals

p=1-4 (15)

and the other values of probabilities are defined by the for-
mulas of the same structure as the formulas (5-9).

Probability of Killing by the Fragments of the Shell,
Taking into Account the Motion of the Target

The presented probability models allow the fragmentation
action of a round equipped with a proximity, time, or pro-
grammed fuse to be taken into account. It has to be noted
that there is a difference between firing a round equipped
with proximity fuse and a round with time or programmed
fuse. In the first case one can assume that the random vector
process describing the location of the round’s blast epicenter
in relation to the target is equal to R, or R|. In the second
case the discussed random vector process is a function of R,
or R, and a random variable T describing the time from the
moment the round leaves the barrel to the moment of blast.
This variable takes into account the systematic error that orig-
inates in the dispersion of delayed burning time or the dis-
persion of a timer-counting mechanism.

In both cases of the presented models one should then
substitute the conditional killing probability P, by the DF
P/(x,, x5, x;). The form of formulas describing the probabil-
ities P, Pr,, Pr, and P, would depend on the form of the
DF, and consequently, each case should be analyzed individ-
ually.

Example Numerical Results

The calculations were made for an extreme case when a
target of 8 m length by 2 m height moves at a distance of 3000
m, just above the ground level in a direction perpendicular
to the axis of the barrel, with the velocity of 250 or 50 m/s.
The AA battery consists of a twin 30 mm x 170 Mauser
cannon (N = 70, P, = 0.37) or a twin 35 mm X 228 Oerlikon
cannon (N = 35, P, = 0.5). The values of N and P, were set
according to Refs. 3 and 6. It was additionally assumed that
for both calibers R, and R, are the same and the respective
standard deviations equal: ¢, = 0,, = 1.8 m; 0,; = 2.0 m;
o, = 0, = 4.5m, gy = 9.0 m. The results are given in Tables
1 and 2.

Table 1 Values of probability when there is correlation
between R, and R,

30 mm x 170 35 mm x 228 35 mm x 228
Probabilities v. = 250 m/s v, = 250 m/s v. = 50 m/s
P, 0.3666 0.4688 0.4846
P, 0.0091 0.0624 0.0309
P, 0.6243 0.4688 0.4846

Table 2 Values of probability when there is no correlation
between R, and R,

30 mm X 170 35 mm x 228 35 mm x 228
Probabilities v, = 250 m/s v. = 250 m/s v. = 50 m/s
Py 0.8314 0.7514 0.8279
Py 0.0073 0.0584 0.0271
P, 0.1613 0.1902 0.1415
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Conclusions

The numerical results presented indicate the strong influ-
ence of the method of laying the gun on the final probability
value. Correcting the aiming for each shot in a burst approx-
imately doubles the probability P,. However, it does not af-
fect significantly the value of the probability P,,. It also has
to be noted that there is relatively weak influence of the target
velocity on the values of probability.
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Introduction

HE ship airwake is defined as an arbitrary volume of air,

namely an air burble, surrounding the ship. The effect
of airwake on aircraft/ship interface operation is determined
by the airflow disturbances caused by the ship that are per-
ceptible to the pilot during the final approach and landing in
a shipboard operation. A better understanding of the airwake
effect would improve aircraft operations in a seabase interface
environment. '

The complexity of the ship airwake problem requires the
use of a Navier—Stokes-type method to reveal correct flow
features. Advances in numerical algorithm schemes along with
increased computer speed and capacity have made it feasible
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