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Fig. 2 Vortex burst trajectories.
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The control parameter Kf in Eq. (9) is the only variable
needed to fine-tune the vortex-burst predictions. It was ad-
justed for the 60-deg delta wing to achieve onset of vortex
burst at the wing trailing edge at a = 13 deg. A value of 2.6
for Kf gave this result. When this same value of Kf was used
for VBM/VLM computations over a range of angles of attack
for each of the wing shapes tested, the vortex burst locations
shown in Fig. 1 resulted. Wind-tunnel values for burst loca-
tions on similar models from Refs. 8 and 9 are plotted in Fig.
2 for comparison. Note the good agreement between the model
and wind-tunnel data for all shapes tested.

Conclusions
A model for leading-edge vortex bursting has been devel-

oped and used with the vortex lattice method to predict vortex
bursting on highly swept wings. The model was derived from
the steady, incompressible Navier-Stokes equations for the
vortex core. The method was tested on four highly swept wing
models. In all cases vortex burst predictions agreed well with
the vortex burst locations observed in wind- and water-tunnel
tests.
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Nomenclature
Pr(jti, *o, JC3) = damage function1 (herein after referred to

as DF), which determines the value of
probability of killing the target on the
condition that the center of inertia of the
target is in a defined location in space
(jc,, ;c2, ;c3) related to the projectile blast
epicenter.

Pr ~ the probability of killing the target when
at least a single hit is scored. It is the
average value of DF for the points
(jc1? JC2, JC3) contained within the target.

= random vector process or random vector
variable that describes ballistic dispersion.
It characterizes the location of a projectile
relatively to the average trajectory.

= random vector process or random vector
variable that describes aiming error. This
vector is characterized by a minimum
length during the projectile flight and is
equal to the difference between the radius
vector Xp of the point that overlaps the
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c.m. of the projectile and the radius
vector xc of the hypothetical target.

R', = random vector process or random vector
variable that describes corrected aiming
error. This vector is characterized by a
minimum length during the projectile
flight and is equal to the difference
between the radius vector xp of the point
that overlaps the c.m. of the projectile
and the radius vector xc of the actual
target.

Introduction

T HIS Note will show the kill probability of a small-caliber
automatic AA cannon system against a single airborne

target. A probability model investigates the change in prob-
ability value as a function of ballistic and meteorological con-
ditions of shooting, number of rounds fired, technical char-
acteristics of the armament, fire control system, target, etc.
This model is therefore a tool for assessment of the existing
A A systems as well as the ones being designed. It can also
be used for the construction of models used for simulation of
combat action. The theory has been illustrated with examples
of numerical results.

The approach to probabilistic modeling of killing an air-
borne target may vary and depends on the number of data
available and the objective function of such analysis.

Usually during the analysis of this problem the following
two partial tasks are considered: 1) determination of DF,
Pr(xi,x2, x3) and 2) determination of the probability of hitting
the target or hitting the certain three-dimensional range con-
taining the target, /?.

DF characterizes each target-projectile configuration. These
functions are determined on the basis of empirical data. Some
examples of such functions can be found in a report of the
Bofors Company.2 In comparative analysis, instead of the DF,
it is often accepted to use the probability of killing the target
when at least a single hit is scored, Pr. The value of this
probability is usually given as a function of projectile caliber3

or mass of explosives in the projectile.4

The second of the two partial tasks is directly connected
with the problem of firing at the airborne target. Figure 1
presents the scheme of such firing. In the moment f0, the
projectile is at the muzzle. The target is then at a point A's.
However, target tracking system locates the target at a point
As. It is the result of a target tracking error characterized by
a vector Rs. On the basis of the coordinates ofAs, the assumed
hypothesis for the target motion during the flight of the pro-
jectile, ballistic, and meteorological conditions of shooting,
the fire control system solves the hit problem. The solution
gives the hypothetical location of the hit point Aw in the mo-
ment ti. The existence of the aiming error Rt is why in the
moment t{ the projectile on average trajectory will be at a

Range of target-projectile rendezvous

Actual target trajectory /Aw1 \
AS- _._._....k..-.....—-

Hypothethetical target
A s \ trajectory

Actual projectile
trajectory "/

\ //% Calculatedprojectile
trajectory

So \
AA battery

point P. Because of the ballistic dispersion Rh the actual lo-
cation of the projectile in the moment tl is at point P'. Ad-
ditionally, the actual location of the target in the moment t}
is at point A'w. The reason for that is the existence of the
corrected aiming error/?/. Therefore, in the range of projectile
and target rendezvous their relative location will be described
by a vector R. The latter is the vector sum of R't and Rh. It
has to be noted here that the optimization of the AA firing
problem means the minimization of R in the range of pro-
jectile and target rendezvous. Because of the random char-
acter of this phenomenon, R should be treated as a random
vector process or random vector variable. The determination
of the probability of hitting the target or hitting the certain
three-dimensional range containing the target p will be pos-
sible when the probability density function of R is known.

Additionally, the general model describing the kill proba-
bility should also take into consideration the number of rounds
fired and type of fire, i.e., single cannon or battery, etc.

Characteristics of Rt, R't and Rb
In practical applications, especially in comparative analysis,

it is often assumed that the errors Rt or R't are characterized
by a three-dimensional vector normal variable with indepen-
dent components, which probability density in the reference
system associated with the target's center of inertia is ex-
pressed with the following formula:

(27r)3/2c7/1crr2or/3
exp f i [i --

[ 2 L
(*; -± —— -

(1)

where w,, vv2, and w3 denote mean values, and crrl, crt2, and
C7,3 denotes standard deviations for each component.

Then the mean values w t , vv2, and w3 are the components
of vector H% which characterizes the systematic error Rt or
R't and the standard deviations crrl, cr/2, and cr,3 are the com-
ponents of vector o% which characterizes the random error Rt
or R'r As shown on Fig. 1 the difference between Rt and R't
equals Rc. For the target velocity of 250 m/s flying at a distance
of 3000 m from the AA battery firing position the absolute
value of Rc can reach about 210 m for a 35 mm x 228 cartridge
and even about 290 m for a 30 mm x 170 cartridge.

For the ballistic dispersion Rb the following is usually as-
sumed in the range of projectile and target rendezvous:

1) The position of projectile in relation to the average tra-
jectory is described by a normal random vector variable hav-
ing independent components; the standard deviations of the
components lying in a plane perpendicular to a tangent to the
trajectory are equal (a} = cr2 = a).

2) Projectile velocity is described by a determined vector
whose components are equal to the average components of
an adequate random process.

Then the probability density of the ballistic dispersion Rh
is described in the reference system associated with the center
of dispersion with the following formula:

1 exp i -

(2)

Additionally, it is assumed that the standard deviations are
the functions of firing distance D as follows:

a(D) = A-D, a3(D) = B-D, (3)

Fig. 1 AA firing scheme.
where cr3 is the standard deviation of the x3 component ori-
ented along the tangent to the trajectory.
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According to Refs. 5 and 6 for the factors A and B one 'can
assume the following values: A = 0.0015 (1/m) and B =
0.00325 (1/m). They are the mean values for new AA cannons
in the range of calibers between 20-40 mm.

Probability of Killing with Kinetic Energy Projectile,
Taking into Account the Motion of the Target

The discussed probabilistic model is a result of generali-
zation of the papers by Pogorzelski7 and Brandli.4 In this
analysis simplified models have been adopted to characterize
Rh and Rr These models were discussed in the previous par-
agraph. Substituting Rt by R'f does not affect the procedure
and the final formulas. The following two scenarios were the
subject of analysis:

1) The first scenario is characterized by the lack of corre-
lation between Rh and /?„ this practically means a situation
in which the process of laying the gun is corrected for each
shot in a burst.

2) The second scenario applies to the case where there exists
a correlation between Rh and Rr Attention was drawn to
an extreme case when the whole burst was shot with the
same Rr

Bearing in mind the possibility of experimental verification
of the model it was assumed that the target is a rectangular
shape moving with a velocity of vc in a direction given by the
longer side of the rectangular (Fig. 2). A right-handed Carte-
sian coordinate system O'x\x'2x'3 was associated with the tar-
get. A right-handed Cartesian coordinate system Ox^x^ was
associated with the center of ballistic dispersion. The system
Oxlx2x-^ was moving with an average projectile velocity vp. It
was also assumed that the values of probability density of Rb
and Rf remain unchanged while firing a burst of N rounds.
Generally, the coordinate systems O'x(x2x'3 and Ox{x2x3 are
in relation to each other, translated and rotated.

Because of the complexity of the derivation of formulas
that describe the probability of killing the target, the rest of
the reasoning will be presented only in draft.

To determine the probability/? of hit with a single shot, on
the condition that Rt has the coordinates (m,n, and s), it was
necessary to find in the plane of the target the location of a
hit point (x'pl and xp2) by a projectile located in point P'. The
relations between the coordinates in both systems O'x{x2x'3
and OxiX2x3 are used to achieve this. These relations are in
accordance with the theory of the affine transformation for a
three-dimensional space. From the resulting formulas it is
possible then to find the coordinates jt, and x2 as functions of
xpi, x'p2, *3, vp3, and vc. Single-shot hit probability p can be
obtained after the integration of formula (2) within the bound-
aries of the rectangular. The coordinates xl and x2 have to be
expressed as functions of x'pl, x'p2, jc3, vp3, and vc. This leads
to the following formula:

(4)
where 2h is the length of the side AB of the rectangular ABCD
in Fig. 2 and 21 is the length of the side BC of the rectangular
ABCD on Fig. 2.

The subsequent discussion applies to the second case when
there exists a correlation between Rh and Rr Then the whole
burst was shot with the same Rt described by the coordinates
(m, n, and s). Two alternatives were considered in which an
event of target killing was characterized by a probability Pr
or by a minimum number of required hits NT. In both cases
the reasoning is based on the Bernoulli's scheme of experi-
ments.8 In the first case the probability of success in an ex-
periment equals the product pPr. Then, according to the bi-
nominal distribution, the probability of at least one success
in N experiments equals

P'R = 1 - (1 - PP,)» (5)

Fig. 2 Example location of the center of ballistic dispersion in relation
to the target.

The probability of zero hits in a burst of N shots equals

n, = (1 - P)N (6)

and the probability of hitting, but not killing, the target in a
burst of N shots equals

i — iE ~ i (7)

In the second case the probability of hitting the target at least
NT times in a burst of N shots equals

NT-

i - 2 N\
y, k\(N - k)\J (8)

The probability of missing the target in a burst of N shots
equals

PE\ = 1 - P'm — P'M (9)

The probabilities given in formulas (5-9) are the condi-
tional ones. They relate to the case when R, is described by
the coordinates (m, n, and s). To calculate the relevant total
probabilities, one has to use Bayes' formula.8 This leads to
the calculation of the desired probabilities:

1) Target killing P^—when the event of target killing is
taken into account according to the first alternative.

2) Target killing PRl—when the event of target killing is
taken into account according to the second alternative.

3) Hitting but not killing PF—when the event of target
killing is taken into account according to the first alternative.

4) Hitting but not killing PEl—when the event of target
killing is taken into account according to the second alter-
native.

5) Not hitting the target at all PM—which probability is
equal for both alternatives of considering an event of target
killing

PR = I - j J J (1 - p-Pr)Nf,(m, n,s)dmdnds
(10)

r + oc /• + * r +

- J J J (I - p)"f,(m, n, s) dm dn ds (11)

(12)
NT- l N\
«, kl(N - k)\

pk(\ - p)N-kf,(m, n, s) dm dn ds
(13)

(14)
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In these formulas/? should be substituted according to formula
(4) and the form of the function fT(m, n, s) is according to
formula (1).

For the first scenario, which is characterized by the lack of
correlation between Rh and Rf, calculations of each probability
were done using the fact that the probability q of a miss in a
single shot is given by formula (11) when one substitutes
N - 1. Then the probability of hit with a single shot equals

p = 1 - q (15)

and the other values of probabilities are defined by the for-
mulas of the same structure as the formulas (5-9).

Probability of Killing by the Fragments of the Shell,
Taking into Account the Motion of the Target

The presented probability models allow the fragmentation
action of a round equipped with a proximity, time, or pro-
grammed fuse to be taken into account. It has to be noted
that there is a difference between firing a round equipped
with proximity fuse and a round with time or programmed
fuse. In the first case one can assume that the random vector
process describing the location of the round's blast epicenter
in relation to the target is equal to Rr or R'r In the second
case the discussed random vector process is a function of R,
or R't and a random variable T describing the time from the
moment the round leaves the barrel to the moment of blast.
This variable takes into account the systematic error that orig-
inates in the dispersion of delayed burning time or the dis-
persion of a timer-counting mechanism.

In both cases of the presented models one should then
substitute the conditional killing probability Pr by the DF
P,.(JC,, JC2, *3). The form of formulas describing the probabil-
ities PR, PRi, PE, and PFA would depend on the form of the
DF, and consequently, each case should be analyzed individ-
ually.

Example Numerical Results
The calculations were made for an extreme case when a

target of 8 m length by 2 m height moves at a distance of 3000
m, just above the ground level in a direction perpendicular
to the axis of the barrel, with the velocity of 250 or 50 m/s.
The AA battery consists of a twin 30 mm x 170 Mauser
cannon (N = 70, P, = 0.37) or a twin 35 mm x 228 Oerlikon
cannon (N = 35, Pr — 0.5). The values of N and Pr were set
according to Refs. 3 and 6. It was additionally assumed that
for both calibers Rh and Rf are the same and the respective
standard deviations equal: or,, = a,2 = 1.8 m; cr,3 = 2.0 m;
o-, = <72 = 4.5 m, cr, = 9.0 m. The results are given in Tables
1 and 2.

Table 1 Values of probability when there is correlation
between Rb and Rt

Probabilities

PR
PM
P,:

30 mm x 170
v(. = 250 m/s

0.3666
0.0091
0.6243

35 mm x 228
vt. = 250 m/s

0.4688
0.0624
0.4688

35 mm x 228
v(. = 50 m/s

0.4846
0.0309
0.4846

Table 2 Values of probability when there is no correlation
between Rh and Rt

Probabilities

PR
PM
PK

30 mm x 170
vc = 250 m/s

0.8314
0.0073
0.1613

35 mm x 228
vt. = 250 m/s

0.7514
0.0584
0.1902

35 mm x 228
v, = 50 m/s

0.8279
0.0271
0.1415

Conclusions
The numerical results presented indicate the strong influ-

ence of the method of laying the gun on the final probability
value. Correcting the aiming for each shot in a burst approx-
imately doubles the probability PR. However, it does not af-
fect significantly the value of the probability PM. It also has
to be noted that there is relatively weak influence of the target
velocity on the values of probability.
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Introduction

T HE ship airwake is defined as an arbitrary volume of air,
namely an air burble, surrounding the ship. The effect

of airwake on aircraft/ship interface operation is determined
by the airflow disturbances caused by the ship that are per-
ceptible to the pilot during the final approach and landing in
a shipboard operation. A better understanding of the airwake
effect would improve aircraft operations in a seabase interface
environment.12

The complexity of the ship airwake problem requires the
use of a Navier-Stokes-type method to reveal correct flow
features. Advances in numerical algorithm schemes along with
increased computer speed and capacity have made it feasible
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